Manajemen Anestesi pada Pasien dengan Tumor Regio Pineal yang Menjalani Kraniotomi Pengangkatan Tumor dengan Posisi Duduk

Monika Widiastuti*, Dewi Yulianti Bisri**, M. Sofyan Harahap***, Syafruddin Gaus****)

*)Departemen Anestesiologi Fakultas Kedokteran Universitas Pelita Harapan, Tangerang, **)Departemen Anestesiologi dan Terapi Intensif Fakultas Kedokteran Universitas Padjadjaran, Rumah Sakit Dr. Hasan Sadikin Bandung, ***)Departemen Anestesiologi dan Terapi Intensif Rumah Sakit Umum Pusat Dr. Kariadi, Semarang ****)Departemen Anestesiologi,Terapi Intensif dan Manajemen Nyeri Fakultas Kedokteran Universitas Hasanuddin-Makassar

Abstrak

Tumor regio pineal memiliki insiden 0.4-1% dari tumor intracranial. Lokasinya yang dalam, di antara kedua hemisfer otak, berdekatan dengan batang otak dan hipotalamus menjadi tantangan bagi bedah saraf. Operasi dengan supracerebellar approach dalam posisi duduk adalah pilihan terbaik untuk mencapai lokasi. Posisi duduk juga memfasilitasi lapang operasi yang optimal dengan retraksi cerebellum minimal. Posisi duduk membawa tantangan tersendiri untuk dokter anestesi, dengan segala kompleksitas saat memposisikan pasien dan risiko komplikasinya. Venous air embolism adalah pertimbangan utama yang jika tidak terdeteksi dan ditangani dapat menyebabkan kolaps kardiovaskular dalam waktu singkat. Pasien laki-laki berusia 38 tahun datang dengan keluhan nyeri kepala berat dan penglihatan kabur sejak 4 bulan sebelum masuk rumah sakit. Hasil Magnetic Resonance Imaging menunjukkan adanya massa di regio pineal dengan edema perifokal, tanpa deviasi struktur midline. Pasien dilakukan kraniotomi pengangkatan tumor dalam posisi duduk. Operasi berjalan selama 10 jam dengan hemodinamika stabil dan tidak terjadi komplikasi, dalam anestesi umum dengan kombinasi intravena dan inhalasi. Prinsip ABCDE neuroanestesi, posisi duduk dan implikasinya, dan lokasi operasi yang sulit adalah pertimbangan-pertimbangan anestesi yang harus diperhatikan pada pasien ini. Evaluasi preoperasi yang baik, komunikasi dan koordinasi yang baik antara tim bedah dan anestesi sangat diperlukan untuk kelancaran dalam kraniotomi dalam posisi duduk.

Kata kunci: tumor regio pineal, kraniotomi posisi duduk, neuroanestesi, venous air embolism

JNI 2021; 10 (3): 193-205

Anesthetic Management of Patient with Pineal Region Tumor Underwent Craniotomy Tumor Removal in Sitting Position

Abstract

Incidence of pineal regio tumor is 0.4-1% of intracranial tumors. Its location which is buried between two cerebral hemispheres, close to brainstem and hypothalamus become a difficult challenge for the neurosurgeon. Surgery with supracerebellar approach in sitting position is the best method to access the lesion. Sitting position also facilitates the optimal visual field with minimal retractions. However, for anesthesiologist, sitting position is challenging since it has its own complexities during positioning the patient and the risk of complications. Venous air embolism is one of the main concern and if not detected early and treated appropriately would leads to cardiovascular collapse instantly. This is a case of a 38-year-old male with chief complaint of severe headache and blurred vision started 4 months before admission. The Magnetic Resonance Imaging showed a pineal region tumor with perifocal edema, without midline deviation. The patient underwent craniotomy tumor removal with sitting position. The procedure lasted for 10 hours and uneventful. The principle of ABCDE neuroanesthesia, sitting position and its implications, and difficult tumor location are some anesthesia considerations for this patient. A thorough preoperative evaluation, good communication and coordination between surgery and anesthesia team are needed for a smooth uneventful procedure performed in sitting position.

Key words: pineal regio tumor, craniotomy sitting position, neuroanesthesia, venous air embolism

JNI 2021; 10 (3): 193-205

I. Pendahuluan

Tumor regio pineal memiliki insiden 0.4-1% dari tumor intrakranial di populasi dewasa dan 3–8% pada anak. Gejala klinis dari tumor pineal minimal dan tidak spesifik. Gejala yang timbul diakibatkan dari efek massa atau hidrosefalus obstruktif.1 Pilihan terapi pada pasien dengan tumor regio pineal bervariasi, dapat berupa reseksi total, radioterapi, kemoterapi atau kombinasi. Mayoritas tumor di pineal memerlukan tindakan pembedahan.1 Tumor regio pineal yang terletak jauh di dalam pusat cranium dan dikelilingi oleh struktur anatomis penting, menjadi tantangan bagi dokter bedah saraf. Pengetahuan yang presisi tentang kompleksnya anatomi di regio pineal dan struktur-struktur yang harus dilewati untuk mencapai kelenjar pineal, sangatlah penting. Ada banyak pilihan approach yang dapat dilakukan selama pembedahan, namun yang terbaik yang digunakan adalah infratentorial supracerebellar dan occipital transtentorial.^{1,2}

Dokter bedah saraf seringkali meminta pasien dioperasi dalam posisi duduk karena visualisasi lapang operasi yang optimal. Posisi duduk membantu pendekatan langsung ke supracerebellar ke area pineal dan vena cerebral dalam dapat mudah divisualisasi dan dihindari. Meskipun kranium yang dibuka minimal, lapang operasi cukup untuk visualisasi dan melakukan manuver operasi. Dengan melakukan approach ini, regio pineal dan ventrikel tiga dapat dengan jelas divisualisasi. 1,2 Posisi duduk juga memperbaiki drainase vena dan liquor cerebrospinalis (LCS) yang dapat menurunkan tekanan intrakranial (TIK). Akan tetapi banyak komplikasi dari posisi duduk yang harus menjadi pertimbangan, antara lain hemodinamika yang tidak stabil akibat venous pooling di ekstremitas bawah, penurunan perfusi otak akibat efek gravitasi, pneumocephalus, hematoma subdural, kuadriplegia, makroglosia, kerusakan saraf akibat penekanan di pleksus brakialis dan sciatica, dan venous air embolism (VAE).3,4

Venous air embolism terjadi karena masuknya udara ke sistem vaskular, dapat terjadi kapanpun ketika terdapat hubungan antara lingkungan dan vena yang terbuka pada tekanan subatmosfer. Deteksi dini VAE penting untuk dilakukan karena VAE dapat mengobstruksi sirkulasi pulmoner yang menyebabkan gagal jantung kanan dan henti jantung.³ Prinsip airway, breathing, circulation, drugs, environment (ABCDE) neuroanestesi, posisi duduk dan segala komplikasinya, lokasi operasi yang sulit adalah beberapa pertimbangan anestesi yang harus diperhatikan pada pasien ini.4 Koordinasi dan komunikasi yang baik antara dokter bedah saraf dan anestesi dalam melakukan kraniotomi dengan posisi duduk harus dilakukan untuk dapat mengantisipasi kemungkinan komplikasi yang terjadi.

II. Kasus

Pasien laki-laki usia 38 tahun dengan tumor regio pineal yang menjalani kraniotomi pengangkatan tumor dalam posisi duduk.

Anamnesis

Pasien mengeluh sakit kepala berat dengan skala nyeri 7-9 dengan Numeric Rating Scale (NRS) sejak 4 bulan sebelum masuk rumah sakit (RS). Sakit kepala terus menerus sehingga mengganggu aktivitas, hanya membaik sesaat ketika beristirahat atau konsumsi obat analgetik paracetamol atau natrium diklofenak. Pasien juga memiliki keluhan pandangan kabur di kedua mata sejak 4 bulan sebelum masuk RS. Riwayat mual, muntah, kejang, penurunan kesadaran, kelemahan anggota gerak disangkal. Tidak ada gejala gangguan siklus tidur. Pasien baru pertama kali mengalami keluhan ini. Tidak ada riwayat serupa dalam keluarga. Untuk keluhan ini, pasien melakukan konsultasi ke dokter spesialis bedah saraf di RS lain dan disarankan melakukan pemasangan Ventriculo-peritoneal (VP) shunt. Namun karena gejala tidak membaik dan dari gambaran computed tomography scan (CT scan) gambaran hidrosefalus tidak membaik, dilakukan repair VP shunt 3 bulan sebelum masuk rumah sakit. Pascaoperasi VP shunt, sakit kepala pasien membaik derajatnya, namun sakit kepala masih dirasakan terus menerus, juga tidak ada perbaikan pada pandangan mata yang kabur, pasien melakukan ke konsultasi ke dokter bedah saraf di RS dan disarankan menjalani operasi

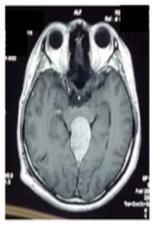
pengangkatan tumor. Pasien tidak memiliki riwayat penyakit lainnya. Tidak ada obat-obatan rutin yang dikonsumsi oleh pasien. Pasien memiliki riwayat operasi kolesistektomi tanpa komplikasi.

Pemeriksaan Fisik

Pasien dengan berat badan 88 kg dan tinggi badan 175 cm (Indeks Massa Tubuh 29). Pemeriksaan fisik menunjukkan pasien compos mentis, tekanan darah (TD) 140/90 mmHg, laju nadi 88x/menit, laju pernapasan 16x/menit, suhu tubuh 36,5°C. Pemeriksaan jalan napas, dengan menggunakan kriteria penilaian jalan napas sulit LEMON yang meliputi look externally, evaluate 3-3-2, Mallampati, Obstruction or Obesity, and Neck mobility. Dari penilaian ini, pasien tidak memiliki kesulitan jalan napas dengan Mallampati I. Pemeriksaan toraks, abdomen, ekstremitas, dalam batas normal. Pemeriksaan neurologis dalam batas normal, tidak ada gangguan saraf kranial, defisit sensorik dan motorik, cerebellar ataxia juga tidak ditemukan. Pemeriksaan mata didapatkan gerakan bola mata bebas ke segala arah, pupil 3/3 dengan refleks cahaya +/+.

Pemeriksaan Penunjang

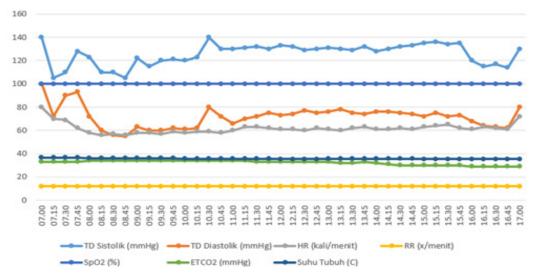

Hasil pemeriksaan Magnetic Resonance Imaging (MRI) kepala (Gambar 1) menunjukkan massa kelenjar pineal dengan edema perifokal yang pasca kontras tampak homogenous contrast enhancement, ukuran massa 3,9 x 3,0 cm (axial) x 3,7 cm (coronal), massa tampak menekan midbrain. Tidak tampak deviasi struktur midline. Tampak terpasang VP shunt dengan tip di sisi medial ventrikel lateralis kanan. Regio sella dan parasellar tanpa kelainan, juga orbita bilateral. Cerebellum menunjukkan struktur anatomis dan mielinasi yang normal. Hasil laboratorium pasien dalam batas normal tertera pada Tabel 1. Hasil elektrokardiografi menunjukkan normal sinus ritme dengan laju nadi 66 kali/menit. Hasil echocardiography menunjukkan hasil normal fungsi sistolik dengan fraksi ejeksi 74%, ruang jantung normal, tidak ada abnormalitas regional wall motion, tidak ada pintasan intrakardiak, keempat katup jantung normal, tidak ada efusi pericardium atau vegetasi. Hasil CT scan thorax menunjukkan hasil normal.


Pengelolaan Anestesi

Selama persiapan untuk pembedahan elektif, pasien dipuasakan selama 6 jam dan diberikan cairan infus berupa NaCl 0,9% 120 mL/jam. Kondisi pasien sebelum induksi anestesi adalah: E4M6V5 dengan pupil bulat isokor diameter 3 mm mata kanan dan kiri, tekanan darah 140/100 mmHg, denyut jantung 80 kali/menit, irama sinus, laju pernapasan 12 kali/menit, SpO, 100% tanpa suplemen Oksigen, suhu 36,5°C.

Induksi dilakukan dengan memposisikan

Gambar 1 (a),(b),(c) Potongan Coronal, Sagital dan Axial dari MRI Brain Pasien Menunjukkan Massa Kelenjar Pineal dengan Edema Perifokal yang Pasca Kontras Tampak Homogenous Contrast Enhancement, Ukuran Massa 3,9 x 3,0 cm (axial) x 3,7 cm (coronal), massa tampak menekan Midbrain.


Tabel 1. Hash Laboratorium 1 asien						
Parameter	Hasil				Nilai Normal	Unit
	H-1	Н0	H1	H+5		
Hemoglobin	14.9			12.50	10.7-14.2	g/dL
Hematokrit	44.4			36.90	31-43	%
Leukosit	8.51			13.01	5-15.5	$10^3/~\mu L$
Trombosit	286			284	150-440	$10^3/~\mu L$
Natrium	140	141	139		137-145	mmol/L
Kalium	3.9	3.5			3.6-5.0	mmol/L
Klorida	104	102	101		98-107	mmol/L
Ureum	21				< 50	mg/dL
Kreatinin	0.88				0.5-1.1	mg/dL
PT Pasien	10.70				9.4-11.3	detik
INR	1.03					
APTT pasien	23.10				27.7-40.2	detik
Random Blood Glucose	127	138	120		< 200	mg/dL

Tabel 1. Hasil Laboratorium Pasien

tempat tidur dengan elevasi kepala 30°, obatobatan anestesi sebagai berikut: midazolam 5 mg, fentanyl 100 mcg, propofol 150 mg dan rocuronium 50 mg intravena kemudian dilakukan intubasi menggunakan video laryngoscope dengan pipa endotrakhea *reinforced* ukuran 8.0 difiksasi pada kedalaman 22 cm. Nasogastric tube (NGT) dan 18Fr kateter *urine* juga dipasang. Ventilator diatur dengan tidal volume 7 mL/kg/menit, laju pernapasan 12 kali/menit, *Positive End Expiratory Pressure* (PEEP) 0 cmH₂O, FiO₂ 50% dengan kombinasi O₂ dan *air*. Dilakukan

Gambar 2. Pasien dalam Posisi Duduk

Grafik 1. Hemodinamika Pasien selama Prosedur

pemasangan arteri line di arteri radialis kanan dan central venous catheter 7Fr di vena subclavia kanan. Dilakukan loading cairan NaCl 0.9% sebanyak 500 mL selama proses induksi hingga pemasangan monitor invasif. Pasien diposisikan dalam posisi duduk, dengan menggunakan Mayfield head rest, kepala difiksasi dengan 3 buah pin. Fleksi kepala dilakukan dengan tetap menjaga jarak dagu dan suprasternal notch 2,5 cm. Lengan difleksi di siku dengan sudut 90°, disangga dan diberi bantalan. Punggung diposisikan sampai 60-70° tungkai difleksi di panggul sampai setinggi dada pasien, kaki difleksi di lutut. kedua tungkai dipasang compression stocking, diberikan bantalan di bawah paha dan lutut. Setelah posisi pasien sesuai, semua pressure

Tabel 2. Kondisi Pasien Selama Perawatan di ICU

		Hari ke-1	Hari ke-2
F	Feeding	Enteral 1800 kcal	Enteral 1800 kcal
A	Analgesia	NRS 2/10, Morfin 1 mg/jam IV	NRS 4/10
S	Sedation	RASS 2/6, Midazolam 0.5 mg/ jam IV	Sedasi tidak diberikan
	Sensorium	GCS E1M1Vtube Pupil 2/2 RC +/+	GCS E4M6V5 Pupil 3/3 RC +/+
Т	Tromboprophylaxis	Compression stocking with intermittent pneumatic device	Compression stocking with intermittent pneumatic device
	Temperature	36.1°C	36.4°C
	Tubes	Pasien diekstubasi pada jam ke-5 pascaoperasi	
Н	Head-up	30°	30°
	Hemodynamic	TD 105-140/60-93 mmHg Denyut jantung 56-80 kali/menit Laju pernapasan 12 kali/menit SpO2 100% Tanpa support hemodinamika	TD 110-140/58-90 mmHg Denyut jantung 60-80 kali/ menit Laju pernapasan 12 kali/menit SpO ₂ 100% Tanpa support hemodinamika
U	Ulcer prophylaxis	Esomeprazole 40 mg	Esomeprazole 40 mg
	Urine output	1-2 ml/kg/jam	1-2 ml/kg/jam
G	Glycemic control	GDS 138 mg/dL	GDS 120 mg/dL
S	Spontaneous Breathing Trial	Mechanical ventilator mode ASV 100%, PEEP 5 cmH ₂ O Pasca ekstubasi, suplemen O ₂ nasal cannula 3 L/menit	Suplemen O_2 nasal cannula 3 L/menit
В	Bowel movement	Bising usus +, tidak ada residu	Bising usus +
I	Indwelling catheter	Arteri line +	Arteri line dilepas
	Imbalance	Na 141, K 3.5, Cl 102 Balance cairan -174 ml/7jam	Na 139, K 3.6, Cl 101 Balance cairan -528 ml/10 jam
D	Drug de-escalation	Morfin dan midazolam dihentikan sebelum ekstubasi	Tidak ada
	Delirium	Tidak ada	Tidak ada

Keterangan: NRS= Numeric rating scale, IV= intravena, RASS= Ramsay agitation sedation scale, GCS= Glasgow coma scale, TD= Tekanan darah, GDS= Gula darah sewaktu, ASV= Adaptive support ventilation, PEEP= positive endexpiratory pressure, Na= Natrium, K=Kalium, Cl = Chloride

points sudah terlindungi, transduser arteri line dipasang setinggi jantung pasien. Cairan rumatan intraoperasi adalah NaCl 0.9% 360 mL/jam, transfusi sel darah merah diberikan sebanyak 223 mL. Perdarahan intraoperasi sebanyak 700 mL. Produksi urine ± 1 mL/kg/jam. Durasi operasi selama 10 jam. Analgesia yang diberikan adalah parecoxib 40 mg intravena dan untuk proteksi lambung diberikan esomeprazole 40 mg intravena.

Pengelolaan Pascabedah

Pasien dipindahkan ke Intensive Care Unit (ICU), dengan kondisi hemodinamika tekanan darah 140/83 mmHg, denyut jantung 70 kali/ menit, laju pernapasan 12 kali/menit, SpO, 100%. GCS E1M1Vtube dalam pengaruh obat, pupil 2/2 RC +/+. Pasien disambungkan ke ventilator dengan mode ASV 100%, PEEP 5 cmH2O. FiO₂ 50%. Terapi tambahan di ICU ceftriaxone 2 gram intravena, lactulose 30 mL per NGT, dexamethasone 5 mg intravena. Kondisi pasien selama 2 hari perawatan di ICU tertera pada Tabel 2. Pasien dipindahkan ke ruangan 1 hari pascaoperasi. Selama di ruangan, pasien stabil, nyeri kepala masih ada dengan NRS 3-4, namun membaik. Tidak ada komplikasi pascaoperasi. Pasien diperbolehkan pulang di hari ke-3 perawatan di ruangan.

III. Pembahasan

Kelenjar pineal merupakan struktur yang kecil dan terletak dalam di antara kedua hemisfer otak. Fungsi dari kelenjar pineal adalah sebagai organ fotoreseptor vang mensinkronisasi hormonhormon dan aktivitas neurobehavioral yang berhubungan dengan ritme sirkadian. Kelenjar pineal juga memiliki integritas dengan seluruh otak.1 Tanda dan gejala tidak spesifik, biasanya diakibatkan oleh efek masa dan hidosefalus obstruktif. Letak kelenjar pineal yang berdekatan dengan ventrikel ketiga dan keempat membuat efek massa yang menyebabkan hidrosefalus. Meskipun jarang, tumor ini menjadi tantangan bagi dokter bedah saraf karena letaknya yang jauh di dalam pusat kranium dan dikelilingi oleh struktur anatomis penting, menjadi tantangan. Ada banyak pilihan approach yang dapat dilakukan selama pembedahan, namun yang terbaik yang digunakan oleh dokter bedah saraf adalah infratentorial supracerebellar dan occipital transtentorial. *Supracerebellar approach* adalah yang dilakukan pada pasien ini, oleh karena itu dokter bedah saraf meminta untuk dilakukan posisi duduk.^{1,2}

Preoperasi

Evaluasi yang dilakukan selalu meliputi anamnesis, pemeriksaan fisik, pemeriksaan penunjang. Evaluasi preoperasi selalu harus mempertimbangkan faktor-faktor yang berkontribusi terhadap komplikasi intraoperasi sehingga dapat dilakukan persiapan.⁵

Anamnesis

Pada anamnesis perlu ditanyakan mengenai kondisi pasien saat ini, apakah terdapat gejala peningkatan TIK, riwayat kejang atau defisit neurologis fokal: defisit motorik atau sensorik akibat penekanan massa. Pada pasien ini, terdapat gejala nyeri kepala berat, pandangan kabur, tapi tidak disertai gejala mual/muntah. Tidak terdapat riwayat kejang, defisit motorik dan sensorik. Pada pasien tidak terdapat gejala gangguan tidur.

Riwayat obat-obatan yang digunakan pasien seperti steroid (dexametahsone), obat kejang, mannitol, atau obat lainnya, juga perlu ditanyakan. Hal ini berhubungan dengan kontinuitas dari obat dan interaksi obat dengan agen anestesi.⁵ Pada pasien ini, tidak diberikan terapi rutin kortikosteroid atau antikejang. Juga tidak diberikan diuretik osmotik preoperasi. Status hidrasi pasien dievaluasi untuk melihat kecukupan asupan cairan dan efek pemberian diuretik. Hal lain yang perlu ditanyakan adalah riwayat operasi sebelumnya dari pasien, apakah pasien pernah mempunyai riwayat operasi bedah saraf (redo atau bukan).5 Pasien ini memiliki riwayat pemasangan VP shunt dan repair VP shunt 3 bulan sebelum masuk RS. Anamnesis juga dilakukan untuk mengetahui komorbiditas lainnya yang menyertai. Pada pasien ini tidak terdapat komorbiditas lainnya.⁵ Ataupun gejala lain yang berkaitan dengan tumor pineal; seperti gangguan siklus bangun-tidur atau gejala hipermelatoninemia (overproduksi dari melatonin vang dapat menyebabkan hiperhidrosis, anorexia nervosam polycystic ovarian syndrome) dan hipomelatoninemia (gangguan tidur, sindrom metabolik, intoleransi glukosa, resistensi insulin).5

Pemeriksaan Fisik

Pada pemeriksaan fisik selain tanda-tanda vital, jalan napas dan pemeriksaan umum lainnya. Pemeriksaan neurologis seperti pemeriksaan status mental, level kesadaran, adanya papil edema, respons Cushing (hipertensi, bradikardia), skor GCS, defisit fokal juga harus dilakukan.5

Pemeriksaan Penunjang

Pemeriksaan penunjang baik radiologis, laboratorium ataupun lainnya harus dievaluasi. Dari pemeriksaan radiologik (CT scan atau MRI), dievaluasi ukuran dan lokasi tumor (apakah dekat dengan pembuluh darah besar atau area eloquent otak), adanya efek massa berupa midline shift, herniasi temporal atau frontal, hilangnya basal CSF cisterna, hidosefalus. Pemeriksaan laboratorium untuk melihat hemoglobin, platelet, kadar elektrolit, fungsi ginjal, fungsi hati, fungsi koagulasi.⁵ Pemeriksaan elektrokardiogram dan rontgen atau CT scan thorax. Pada kasus ini, operator secara spesifik meminta untuk dilakukan dalam posisi duduk. Pemeriksaan echocardiography dilakukan pada pasien ini untuk menyingkirkan adanya kemungkinan ventriculoatrial shunt atau patent foramen ovale.

Intraoperasi Monitor

Pada kraniotomi posisi duduk, selain monitor standar yang digunakan, juga diperlukan monitor tambahan seperti arterial line, central venous catheter (CVC), dan monitor untuk mendeteksi VAE.⁶ Seperti pada kebanyakan prosedur kraniotomi, arterial line dipasang pada pasien ini, yang menjadi pertimbangan adalah mengenai posisi transduser untuk arterial line. Pada pasien ini, transduser diletakkan setinggi jantung pasien. Ada yang menyatakan bahwa pada kraniotomi posisi duduk, transduser untuk arterial line tetap diletakkan pada level jantung.4 Namun, ada juga yang menyatakan untuk meletakkannya setinggi tragus atau setinggi meatus auditory externa atau basis cranii selama posisi dan selama prosedur. Hal ini dikarenakan, setiap perbedaan jarak antara intung dan kepala sebesar 1 cm, dapat terjadi perubahan tekanan sebesar 0,77 mmHg.³ Namun, tidak ada bukti yang kuat yang dimana level transduser yang menyatakan lebih baik.4 Selama pembedahan dilakukan dengan rumatan propofol 50-75 mcg/kg/jam, rocuronium 0,01 mg/kg/menit, sevoflurane 0,7 volume%. Selama operasi, hemodinamika pasien stabil dengan tekanan darah 105-140/60-93 mmHg, denyut jantung 56-80 kali/menit dengan irama sinus. Dengan tetap menjaga MAP pasien dalam rentang autoregulasi, maka perfusi otak diharapkan tetap terjaga. Pemasangan CVC dapat memberikan akses vaskular juga untuk dapat mengaspirasi udara yang masuk, melalui atrium kanan.4,7 Central venous catheter harus selalu dipertimbangkan untuk dipasang pada pasien yang menjalani kraniotomi pada posisi duduk. Dibandingkan dengan kateter dengan satu lubang, memasang kateter dengan banyak lubang meningkatkan kemungkinan bahwa lubang akan berlokasi dimana udara berada. Penggunaan kateter dengan banyak lubang juga memfasilitasi aspirasi dengan volume yang lebih besar. Pemasangan CVC subclavia kanan dilakukan pada pasien ini untuk mengantisipasi terjadinya VAE.6,8

Monitor tambahan adalah monitor untuk mendeteksi terjadinya VAE. Deteksi VAE dapat dengan menggunakan beberapa modalitas, tidak ada satupun metode yang dapat memprediksi kejadian VAE secara akurat. Monitor yang dapat digunakan antara lain transesofageal echocardiography (TEE), precordial Doppler, pulmonary artery catheter (PAC) dan ETCO₂.9 Di beberapa institusi di Jerman, TEE digunakan sebagai monitor rutin dan dipasang setelah induksi anestesi. Namu, TEE tidak 100% sensitif untuk deteksi PFO.² Studi yang melibatkan 200 pasien yang dijadwalkan untuk operasi fossa posterior dalam posisi duduk menunjukkan, lima puluh dua pasien (26%) mempunyai PFO dengan rate venous air embolism (VAE) 54%. Hanya 1 pasien yang memiliki gejala signifikan namun tanpa sekuele neurologis. Kelemahan lain dari TEE adalah invasif dan tidak semua fasilitas

memilikinya. 10 Precordial Doppler merupakan alat yang sensitif dan tidak invasif untuk deteksi udara di atrium kanan, namun hal ini tergantung dari posisi pasien. Probe precordial diletakkan di sternum bagian kanan dan beberapa inci di atas xiphoid, dimana sinyal maksimal terdeteksi. Posisi probe dikonfirmasi dengan injeksi 5ml saline berisi udara melalui kateter atrium kanan dan mendengarkan perubahan karakteristik tonus Doppler. Hasil seringkali menjadi false positif jika udara tidak melewati ultrasonic beam (sekitar 10% kasus).9 Pada kasus ini, yang digunakan adalah monitor ETCO2. End Tidal CO, kontinyu merupakan monitor yang tidak invasif namun sensitif dan dapat dinilai secara kuantitatif.¹¹ Turunnya ETCO₂ menunjukkan meningkatnya gradien arterial-to-end-tidal CO, gradient yang terjadi karena adanya udara intravaskular. Turunnya ETCO, sebesar lebih dari 2 mmHg secara tiba-tiba dapat menunjukkan terjadinya VAE.⁶ Faktor yang mempengaruhi akurasi kapnografi termasuk laju napas cepat, cardiac output rendah, dan penyakit paru obstrutif kronik.^{3,9} Selama operasi, tidak terjadi penurunan mendadak dari ETCO, pada pasien ini.

Posisi

Manfaat dari posisi duduk masih menjadi kontroversi baik pada bedah saraf dan neuroanestesi. Posisi duduk memberikan banyak keuntungan bagi dokter bedah saraf namun membawa tantangan tersendiri bagi dokter anestesi. Banyak institusi yang tidak operasi dalam posisi menyetujui karena komplikasinya. Beberapa faktor yang menentukan dilakukannya posisi duduk adalah risiko dan keuntungan, adanya kontraindikasi absolut, kenyamanan bagi dokter bedah saraf dan anestesi dan komunikasi tim yang baik sebelum dan selama operasi.3,10 Kontraindikasi pada posisi duduk absolut adalah adanya ventriculoatrial shunt yang paten, gangguan jantung berat, patent foramen ovale yang besar atau pulmonarysystemic shunt lainnya, tim anestesi atau bedah familiar dengan posisi. Sedangkan kontraindikasi relatifnya adalah patent foramen ovale yang kecil, umur ekstrim, hipertensi tidak terkontrol, penyakit paru obstruktif kronis (tidak dapat kompensasi jika sampai VAE terjadi.4 Posisi duduk menjadi pilihan dalam operasi bedah saraf agar dapat mengakses fossa posterior dan cervical posterior. Meskipun pada operasi di fossa posterior, posisi pronasi atau lateral dapat juga menjadi pilihan, khususnya pada kasus ini, tumor regio pineal paling mudah diakses melalui approach supracerebellar dalam posisi duduk.

Beberapa keuntungan posisi duduk secara fisiologis dibandingkan posisi lainnya adalah adanya efek gravitasi memfasilitasi drainase dari LCS dari lapang operasi sehingga menurunkan TIK, perbaikan drainase vena serebal yang dapat menurunkan perdarahan dan kebutuhan transfusi darah, eksposure operasi yang optimal dan mengurangi durasi operasi jika dibandingkan posisi lainnya, akses operasi yang langsung pada struktur superfisial dan dalam pada fossa posterior, sehingga mengurangi retraksi jaringan dan risiko kerusakan saraf kranial, akses jalan napas, wajah dan dada pasien yang lebih baik, mengurangi tekanan intratorakal sehingga mengoptimalisasi respirasi dan memperbaiki ventilasi. Mengurangi terjadinya tekanan intraocular yang mengakibatkan *post-operative* loss (POVL).^{3,4,8} Cara memposisikan pasien ini, sesuai dengan cara memposisikan pasien yang direkomendasikan. Untuk posisi duduk, kepala pasien difiksasi menggunakan 3 pin head holder. Retraksi dari cervical cord dan obstruksi drainase vena dari kepala, wajah, dan lidah, harus dicegah dengan memposisikan kepala dengan menjaga jarak sekitar 2,5 cm antara dagu dan sternal notch. Hindari penggunaan oral airway yang besar atau bite block di faring untuk mencegah edema. Hindari rotasi leher yang berlebihan, posisi kepala tetap netral. 4,8,9

Posisi bagian atas tubuh dan kaki dinaikkan dengan menekuk meja operasi menjadi posisi dimana panggul fleksi sebesar 90°. Kompresi abdomen, iskemia ekstremitas bawah, dan cedera saraf *sciatic* dicegah dengan menghindari fleksi berlebihan dari lutut ke dada (fleksi 30°). Pada area penonjolan tulang harus dipasang bantalan, siku dipasang bantalan untuk menghindari kontak dengan meja operasi atau penarikan dari plexus brakialis, dan kaki dijaga agar tidak terjadi penekanan di saraf *common peroneal* yang terletak

di distal dan lateral dari fibula. Alat kompresi pneumatic intermittent atau compression stocking sebaiknya digunakan, seperti pada pasien ini. Hal ini bertujuan untuk membantu aliran balik vena sehingga mencegah episode hipotensi dan memperbaiki oksigenasi otak.3 Namun dengan banyaknya keuntungan ini, bukan berarti tanpa risiko. Penelitian-penelitian menyatakan terdapat 3 faktor risiko yang meningkatkan risiko komplikasi intraoperasi, yakni durasi operasi, komorbiditas pasien, dan posisi duduk. Posisi duduk memiliki risiko yang tinggi karena dapat menyebabkan kondisi yang mengancam nyawa, antara lain:3,6,8

- Efek gravitasi pada sistem vaskular yang menyebabkan pooling dari vena sehingga menurunkan preload dan pasien dapat hipotensi mengalami sistemik yang signifikan. Penurunan tekanan darah dapat mengakibatkan penurunan tekanan perfusi serebral, iskemia otak atau spinal dan bahkan dapat menyebabkan quadriplegia. hipotensi dapat dicegah dengan pemberian bolus cairan sebelum memposisikan pasien dan memasang stoking kompresi setinggi paha atau memasang perban elastis pada ekstremitas bawah, dan memberikan vasopressor.
- Menyebabkan peningkatan resistensi vaskular sistemik dan pulmoner serta meningkatkan risiko kejadian tromboemboli.
- Kejadian tension pneumocephalus pascaoperasi sebesar 3%. Hal ini disebabkan udara yang memasuki rongga epidural dalam jumlah besar sehingga dapat menyebabkan efek massa, berakibat hemiparesis, kejang atau herniasi otak. Nitrous oxide harus dihindari selama 14 hari pertama pasca kraniotomi. Risiko ini berkurang dengen pemasangan selang ventrikulostomi.
- Fleksi leher yang esktrim dimana dagu bersentuhan dengan dada, ditambah dengan penggunaan oral airway dapat menyebabkan obstruksi drainase vena dan limfatik, menyebabkan makroglosia yang signifikan yang dapat mengakibatkan obstruksi jalan dan hipoksia setelah ekstubasi. napas dapat mengakibatkan Hiperfleksi juga kuadriplegia. Posisi kepala dan leher yang

- ideal, yakni jarak 2,5 cm antara dagu dan sternum dengan penggunaan bite block yang lembut dapat mengurangi risiko ini.
- Neuropati perifer dapat terjadi akibat kompresi iskemik atau peregangan berlebih dari saraf. Saraf yang terpengaruh terutama adalah saraf peroneal yang dapat menyebabkan drop foot. Saraf lainnya adalah plexus brakialis dan saraf sciatic. Terdapat laporan mengenai kuadriplegia akibat fleksi leher ekstrim pada kondisi hipotensi dan gangguan autoregulasi. Penggunaan bantalan pada titik-titik tekan sangat penting.
- Jika terjadi henti intung maka resusitasi kardiopulmoner harus dilakukan pada posisi supinasi. Tidak seperti pada pasien yang dioperasi dalam posisi pronasi, resusitasi dapat dilakukan tanpa harus mengubah posisi pasien.
- Trauma lidah dan laring (termasuk trauma jika TEE digunakan)
- Kejadian venous air embolism yang mengancam jiwa

Venous air embolism

Venous air embolism (VAE) dapat terjadi pada operasi dengan lapang operasi di atas jantung, sehingga tercipta perbedaan tekanan antara lapang operasi dan jantung. Risiko ini bervariasi tergantung jenis operasi. Sinus vena yang noncollapsible yang terpapar selama operasi membuat risiko VAE tinggi pada kraniotomi posisi duduk. Dua faktor utama yang menentukan morbiditas dan mortalitas dari VAE ini adalah volume udara yang terjebak dan kecepatan dari akumulasi udara. Jumlah udara yang dapat menyebabkan emboli yang fatal masih diperdebatkan, namun dilaporkan 200-300 mL (3-5 mL/kg).9 Venous air embolism terjadi akibat sistem vena yang terbuka dan adanya perbedaan tekanan vena. menurun di lapang operasi akibat efek gravitasi. Tempat tersering masuknya udara adalah di sinus vena yang tidak mudah kolaps karena menempel dengan dura, akan tetapi udara bisa masuk lewat vena manapun yang terbuka selama operasi. Vena yang terbuka menyebabkan tekanan vena negatif yang memfasilitasi masuknya udara.^{3,4}

Insiden VAE bervariasi dari 1.6-50% tergantung dari metode deteksi yang digunakan oleh studi. 4,11

	Derajat Venous Air Embolism	Penanganan
VAE kecil (< 10 mL)	 Dapat terdeteksi dengan TEE atau precordial Doppler. Tidak ada perubahan pada ETCO₂, SpO₂, PAP. Biasanya TD dan HR tidak berubah. 	 Segera informasikan ke operator → menyiram lapangan operasi Kompresi vena Identifikasi serta menutup sumber masuknya udara jika memungkinkan.
VAE sedang (10-50 mL)	Terdeteksi melalui TEE dan precordial Doppler ↓ ETCO ₂ menurun ↑ PAP Mulai muncul respons sistemik	Segera informasikan ke operator Hentikan operasi sampai VAE hilang. Oksigen 100% Cairan dan vasopresor (jika hipotensi)
VAE berat (> 50 mL)	Terjadi perubahan besar pada monitor yang digunakan. Terjadi disritmia, bradikardia, hipotensi, gagal jantung kanan, dan henti jantung dapat juga terjadi.	Hentikan operasi Lakukan resusitasi Posisi Trendelenburg atau <i>left lateral decubitus</i> . Jika terpasang CVC, maka lakukan aspirasi udara yang masuk ke jantung. Vasopresor

Namun sebagian besar kejadian VAE yang terdeteksi dilaporkan tidak relevan secara klinis. Pada Tabel 3 terdapat skala yang digunakan menentukan derajat VAE penanganannya.4 Venous air embolism dapat menyebabkan morbiditas dan mortalitas yang serius akibat hipotensi dan kolaps kardiovaskular (akibat obstruksi aliran darah ke jantung kanan dan hipertensi pulmoner) dan emboli paradoksikal sistemik melalui shunt intrakardiak atau intrapulmoner yang dapat mengakibatkan stroke dan iskemia arterial. Deteksi awal VAE sangat penting untuk menghentikan masuknya lebih banyak udara. 9 Idealnya TEE dan precordial Doppler digunakan, namun karena keterbatasan fasilitas hal ini tidak dapat dilakukan.

Pilihan Anestesi

Untuk obat-obatan anestesi, tidak ada rekomendasi jenis anestesi terbaik untuk posisi duduk, namun anestesi intravena lebih disarankan. Penggunaan N₂O ada posisi duduk masih menjadi kontroversi. N₂O meningkatkan ukuran dari gelembung udara intravaskular jika emboli udara terjadi. Penelitian random prospektif pada pasien yang memerlukan operasi fossa posterior atau *cervical*

menunjukkan bahwa 50% N₂O tidak memberikan efek signifikan terhadap kejadian atau keparahan dari VAE jika N₂O dihentikan ketika udara terdeteksi pada ultrasonography Doppler.9 Akan tetapi ada juga studi yang menyatakan untuk tidak menggunakan N₂0 karena sifatnya yang dapat berdifusi ke rongga kosong sehingga memperberat terjadinya pneumocephalus dan jika terjadi VAE akan membuat VAE membesar. Pada kasus ini tidak digunakan N₂O, kombinasi Oksigen dan air digunakan untuk memberikan FiO, 50% kepada pasien.4,8 Banyak teknik dan agen anestesi yang digunakan pada operasi bedah saraf pada posisi duduk. Apapun pilihannya, yang terpenting adalah tujuan dari neuroanestesi terpenuhi, yakni, lapang operasi yang tenang, TIK yang menurun, CPP adekwat, dan tekanan ventilasi yang rendah.⁴ Pada kasus ini digunakan kombinasi intravena dan inhalasi sevoflurane dengan MAC kurang dari 1.

Manajemen Pernapasan

Ventilasi mekanik diatur untuk menjaga pasien dalam kondisi normokapnia (ETCO₂ sekitar 35 mmHg). Pada kasus ini disarankan untuk menjaga PaCO₂ yang lebih tinggi daripada kasus

tumor kebanyakan dikarenakan TIK pada posisi duduk lebih rendah.4,8

Cairan Intraoperasi

Evaluasi status hidrasi pasien juga penting dilakukan karena saat posisi duduk, efek gravitasi akan membuat darah lebih banyak di ekstremitas bawah sesuai efek gravitasi.6,8,9 Pemberian loading cairan sebelum posisi duduk dapat membantu mencegah hipotensi., seperti pada pasien ini. Namun, jika tidak membaik maka dapat diberikan vasopressor berupa ephedrine atau phenylephrine.

Pascaoperasi Komplikasi

terdapat risiko Meskipun secara teoritis, komplikasi jalan napas dalam bentuk edema jalan napas, namun beberapa laporan menunjukkan hal ini jarang terjadi. Perhatian lain pascaoperasi meliputi neuropati perifer, kuadriplegia, pneumocephalus. 4,6,8 Kuadriplegia yang tidak bisa dijelaskan diaporkan pernah terjadi pasca posisi duduk. Hal ini disebabkan oleh fleksi leher dan obstruksi pembuluh darah selama operasi. Karena itu posisi kepala netral dan menjaganya agar tidak terlalu fleksi (jarak sternal notchdagu 2,5 cm) harus dijaga. Makroglosia, trauma di daerah mulut dan pembengkakann pada faring dilaporkan pada beberapa kasus dengan durasi operasi yang panjang. Penggunaan TEE sebagai monitor tambahan juga menambah risiko terjadinya trauma. 4,6,8 Insidens pneumocephalus dilaporkan sebanyak 100% untuk pasien yang menjalani operasi dalam posisi duduk, 72% untuk pasien yang menjalani operasi dalam posisi park-bench (semiprone lateral), dan 57% pada pasien dengan posisi pronasi. Pneumocephalus biasanya asimtomatik dan hilang dengan sendirinya. Akan tetapi, tension pneumocephalus dapat menyebabkan terjadinya defisit neurologis. Penanganannya suportif, termasuk pemberian Oksigen 100% dan pada kasus berat, pembuangan gas dengan aspirasi atau membuka ulang dura.7

Emergence

Tujuan anestesi selama periode emergence

pascaoperasi adalah untuk mencegah peningkatan tekanan darah mendadak, pulih sadar cepat, kembalinya kekuatan motorik serta mengurangi batuk dan mengedan. Pada neuroanestesi, pasien dapat diekstubasi secara langsung ataupun tidak langsung dan hal ini memiliki pertimbangan serta pro dan kontra masing-masing. Keputusan ini didasari oleh kondisi pasien, jenis, lama dan manipulasi selama operasi. 12,13 Ekstubasi awal atau yang disebut teknik fast track mulai digunakan pada pasien yang menjalani neuroanestesi. Keuntungan melakukan teknik ini adalah status neurologis pascaoperasi dapat segera dievaluasi, mengurangi kejadian hipertensi dan pelepasan katekolamin, pasien dapat terhindari dari komplikasi penggunanan ventilasi mekanis dan perawatan di ICU serta biaya yang lebih hemat. Akan tetap di luar keuntungan ini perlu diingat bahwa banyak pasien yang setelah menjalani operasi bedah saraf memerlukan ventilator akibat kerusakan saraf yang terjadi. Kondisi neurologis sebelumnya, secara langsung atau tidak langsung mempengaruhi kontrol pernapasan dan patensi jalan napas.

Kondisi yang terjadi selama operasi juga mempengaruhi, misalnya pada pasien dengan banyak manipulasi di daerah infratentorial dengan risiko terjadinya edema atau cidera brainstem yang disebabkan reseksi yang sulit. Jika terjadi manipulasi ekstensif di sekitar struktur medulla atau edema yang signifikan terjadi, maka ETT harus dipertahankan sampai pasien sadar, mengikuti perintah dam menunjukkan kembalinya refleks jalan napas. Risiko terjadinya hipoksemia dan hipokapnia juga berkurang, pasien memiliki waktu lebih untuk stabilisasi hemodinaika dan hemostasis. Sedasi dibutuhkan selama masa pemulihan ini. Oleh karena itu teknik ekstubasi awal harus dipertimbangkan secara individual dan harus didiskusikan dengan tim bedah saraf. 12-14 Tidak ada konsensus yang menyatakan kapan dan pada pasien mana ekstubasi awal dapat dilakukan. Kondisi neurologis dan sistemik harus diperhatikan. Pada pasien ini karena operasi dilakukan pada regio pineal yang sangat dekat dengan brainstem dan cerebellum, dengan durasi 10 jam maka ekstubasi ditunda hingga pasien pulih sadar di ICU. Selama menunggu pasien pulih, sedasi dengan morfin dan midazolam diberikan. Banyak agen sedasi yang menjadi pilihan. Golongan opioid masih menjadi pilihan karena selain memiliki efek analgetik juga memiliki efek sedasi dan hipnotik. Hal yang tidak diinginkan dari penggunaan opioid adalah penurunan kesadaran, depresi napas dan miosis yang dapat mengganggu evaluasi neurologis dan menyebabkan hiperkarbia yang dapat meningkatkan TIK. Akan tetapi dengan menggunakan dosis kecil yang dititrasi, hal ini dapat dihindari. Dengan adanya obat reversal dari narkotika, yakni naloxone maka efek yang tidak diinginkan dapat diatasi dengan cepat. 14,15

Midazolam yang merupakan golongan benzodiazepine merupakan agen sedasi yang paling sering digunakan di neuro ICU. Selain efek sedasi, efek anxiolysis dan amnesia antegrade yang dibutuhkan selama perawatan di neuro ICU juga merupakan property dari midazolam. Benzodiazepine tidak seperti opioid, tidak mempengaruhi perubahan tekanan darah atau laju nadi yang signifikan, pernapasan juga tidak terganggu. Tidak adanya efek analgesia, menjadikan opioid sering diberikan bersamaan dengan midazolam. Akan tetapi perlu diingat untuk menghindari pemberian dosis tinggi untuk menghindari agitasi dan delirium. 14,15 Obat sedasi lain yang dapat digunakan adalah dexmedetomidine. Dexmedetomidine, agonis alpha 2, juga menjadi pilihan agen sedasi di neuro ICU. Sebagai agen yang dapat diberikan secara kontinyu, mudah dititrasi, memilik efek sedasi, anxiolysis, dan analgesia, tidak memiliki metabolit aktif, dan simpatolitik menjadikan agen ini semakin banyak digunakan di neuro ICU. Akan tetapi perlu diingat mengenai efek bradikardia dan hipotensi yang dapat terjadi. 14,15 Analgetik yang diberikan pada pasien ini adalah Parecoxib. Parecoxib merupakan obat penghambat cyclooxygenase-2 (COX-2) selektif yang semakin banyak digunakan untuk analgesia pascaoperasi. Parecoxib bekeria dengan menghambat inflamasi dengan mengurangi pembentukan prostaglandin dengan menghambat aktivitas COX-2 di perifer dan sentral. Parecoxib tidak mempengaruhi agregasi trombosit sehingga mengurangi risiko perdarahan pascaoperasi.

Penggunaan parecoxib juga dapat mengurangi kebutuhan opioid pascaoperasi. Pengaruh lainnya adalah mengurangi risiko terjadinya postoperative cognitive dysfunction (POCD). 16-18

IV. Simpulan

Kraniotomi posisi duduk memberikan lapang operasi yang optimal untuk reseksi tumor pineal pada kasus ini. Posisi duduk adalah standar emas untuk posisi operasi tumor di regio pineal dan tumor ventrikel empat, Keputusan untuk melakukan posisi duduk harus mempertimbangkan indikasi, kontraindikasi, kenyamanan dan familiaritas dari tim bedah dan anestesi di kamar operasi. Pemahaman tentang implikasi posisi duduk pada pasien penting untuk menjaga keselamatan pasien dan membuat operasi berjalan lancar. Pada kasus ini, operasi dengan posisi duduk dapat berjalan dengan baik tanpa adanya komplikasi, tidak terjadi komplikasi intraoperasi VAE ataupun komplikasi pascaoperasi lainnya.

Daftar Pustaka

- 1. Kennedy BC, Bruce JN. Surgical approaches to the pineal regio. Neurosurg Clin. 2011;22(3):367–80.
- Lindroos A-C, Niiya T, Randell T, Romani R, Hernesniemi J, Niemi T. Sitting position for removal of pineal regio lesions: the Helsinki experience. World Neurosurg. 2010;74(4– 5):505–13.
- 3. Ganslandt O, Merkel A, Schmitt H, Tzabazis A, Buchfelder M, Eyupoglu I, et al. The sitting position in neurosurgery: indications, complications and results: a single institution experience of 600 cases. Acta Neurochir (Wien). 2013;155(10):1887–93.
- 4. Dallier F, Di Roio C. Sitting position for pineal surgery: some anaesthetic considerations. Neurochirurgie. 2015;61(2–3):164–7.
- 5. Bisri T, Bisri DY. ABCDE Neuroanestesi prinsip dan teknik. Dalam: Anestesi untuk

- operasi tumor otak supratentorial infratentorial. Bandung: Fakultas Kedokteran Universitas Padjajaran; 2016. 1–40.
- 6. Goraksha S, Thakore B, Monteiro J. Sitting position in neurosurgery. J Neuroanaesth Crit Care. 2020;7(02):77–83.
- 7. Himes BT, Mallory GW, Abcejo AS, Pasternak J, Atkinson JLD, Meyer FB, et al. Contemporary analysis of the intraoperative perioperative complications procedures neurosurgical performed in the sitting position. J Neurosurg. 2016;127(1):182-8.
- 8. Gracia I, Fabregas N. Craniotomy in sitting position: anesthesiology management. Curr Opin Anesthesiol. 2014;27(5):474-83.
- 9. Schlichter RA, Smith D. management for posterior fossa surgery. Dalam: Cotrell JE, Patel P, Warner DS, editors. Neuroanesthesia. 6th ed. New York: Elsevier; 2017. 20-221.
- 10. Feigl GC, Decker K, Wurms M, Krischek B, Ritz R, Unertl K, et al. Neurosurgical procedures in the semisitting position: evaluation of the risk of paradoxical venous air embolism in patients with a patent foramen ovale. World Neurosurg. 2014;81(1):159-64.
- 11. Kurihara M, Nishimura S. Estimation of the head elevation angle that causes clinically important venous air embolism in a semi-sitting position for neurosurgery: a retrospective observational study. Fukushima J Med Sci. 2020;66(2):67-72.
- S. 12. Saringcarinkul A. Suwannachit

- Punjasawadwong Y. Factors associated operating-room extubation after emergency craniotomy. J Med Assoc Thai. 2016;99(8):933-9.
- 13. Cai Y, Zeng H-Y, Shi Z-H, Shen J, Lei Y-N, Chen B-Y, et al. Factors influencing delayed extubation after infratentorial craniotomy for tumour resection: a prospective cohort study of 800 patients in a chinese neurosurgical centre. J Int Med Res. 2013;41(1):208-17.
- 14. Bisri DY, Bisri T. Prinsip-prinsip neuroanestesi. Dalam: Dasar-dasar neuroanestesi. Bandung: Fakultas Kedokteran Universitas Padjadjaran; 2019. 50–2.
- 15. Watts CR, Kelley P. Sedation and analgesia in neurosurgery/neurocritical care. Contemp Neurosurg. 2016;38(13):1-6.
- 16. Paul BS, Paul G. Sedation in neurological intensive care unit. Ann Indian Acad Neurol. 2013;16(2):194.
- 17. Williams DL, Pemberton E, Leslie K. Effect of intravenous parecoxib on post-craniotomy pain. Br J Anaesth. 2011;107(3):398-403.
- 18. Huang S, Hu H, Cai Y-H, Hua F. Effect of parecoxib in the treatment of postoperative cognitive dysfunction: a systematic review and meta-analysis. Medicine (Baltimore). 2019;98(1).
- 19. Dunn LK, Naik BI, Nemergut EC, Durieux ME. Post-craniotomy pain management: beyond opioids. Curr Neurol Neurosci Rep. 2016;16(10):93.